lunes, 26 de octubre de 2009

Cavitación Capitulo V

Cálculo de la Cabeza Total de Succión a la entrada de la bomba.

La bomba se alimenta desde un estanque que debe tener un cierto nivel de líquido y que puede estar sobre o bajo el centro del flanche de succión de la bomba (+ Zm o – Zm). El estanque puede estar abierto a la atmósfera (Hat), o presurizado (+ Hpr), o bajo vacío (- Hpr). El flujo tiene que vencer la resistencia de las tuberías y accesorios entre la salida del estanque y la entrada a la bomba (Hfs, Hi, etc.).

El sistema externo de succión tiene que suministrar una cierta cantidad de cabeza (energía) en el flanche de admisión de la bomba. Esto se conoce como NPSHa, (Net Positive Suction Head available) Cabeza Neta Positiva de succión disponible. El término ‘cabeza’ medido en metros, se usa como una expresión de la energía del líquido en cualquier punto en el sistema de flujo. Los líquidos incompresibles pueden contener energía en la forma de velocidad, presión, o elevación. El sistema externo de succión tiene que diseñarse de modo que la presión estática en el flanche de succión sea siempre positiva, mayor que la presión de vapor y suficientemente alta para vencer las pérdidas internas en la zona de succión de la bomba, cuyo valor lo especifica el fabricante y es conocido como NPSHr (requerido).

En términos prácticos, el NPSHa (en metros) en el flanche de succión de un sistema simple, está dado por la ecuación algebraica:

NPSHa = + Hat + (Zm) + Hvs + (Hpr) – Hvap – Hfs – Hi. (Ecuación 1)

En donde:

Hat = Cabeza de Presión atmosférica en el lugar de aplicación

Zm = Cabeza estática de succión. Altura estática del líquido. Positivo sobre el eje de la bomba y negativo bajo el eje de la bomba.

Hvs = Cabeza de velocidad en flanche de admisión V = 1273 x Caudal (l/s)/d2 donde d = diámetro (mm)

Hpr = Cabeza de presión del estanque de succión. Positivo sobre y negativo bajo la presión atmosférica.

Hvap = Cabeza de presión de vapor (a la temperatura del líquido) en el flanche de admisión.

Hfs = Cabeza de fricción. Cabeza (energía) requerida para vencer la resistencia que oponen al flujo las tuberías, válvulas, fittings, expansiones, restricciones, etc., existentes entre el punto A y el flanche de succión de la bomba, (punto B en Fig. 3). Es función de la velocidad y características del fluido y de la características de la tubería según factores empíricos encontrados en tablas y gráficos especializados.

Hi = Cabeza de ingreso a la línea de succión (Punto A). Representa la energía gastada en el ingreso del fluido desde el estanque a la línea de succión. Es función de la velocidad del fluido y de la forma de unión del estanque al tubo de succión. Hi = k · V2/2g donde k = factor tabulado en textos especializados.

Nota. Todos los términos de presión se convierten en metros de ‘cabeza’, dividiendo la presión en kPa por 9.81 y por la densidad específica del fluido.

En instalaciones existentes, el NPSHa también se puede calcular con la lectura (presión manométrica absoluta) de un manómetro conectado cerca del flanche de succión.

Nota: El manómetro sólo indica la presión estática en el punto de conexión por lo que debe incorporarse la cabeza dinámica Hvs.

NPSHa = + Hat – Hvap + Hvs + (Hms)

Hms = Cabeza de succión manométrica. Positiva si la presión manométrica es superior a la presión atmosférica y negativa si es inferior.

lunes, 7 de septiembre de 2009

Cavitación Capitulo IV

· Caída de Presión en el sistema externo de succión de la bomba

En la Figura 3 se muestra un esquema simple de un “sistema externo de succión” y los factores principales que determinan la presión a la entrada de la bomba (NPSHa). La reducción de cualquiera de los componentes positivos o el incremento de cualquiera de los componentes negativos producirá una disminución de la presión en la entrada de la bomba.



Nomenclatura usada en la Figura 3.

ρ = Densidad específica del líquido
psn = ‘p’ presión estática local (absoluta). ‘s’ – indica succión y ‘n’ posición de la medición. La presión en cualquier punto puede convertirse en ‘cabeza’ dividiendo su valor en kPa por el factor ‘ρg’. (g = 9.81)
ps1 = Presión estática (absoluta) del estanque de succión en kPa.
hp s1 = Cabeza estática de succión. Es la presión estática absoluta sobre la superficie del líquido en el estanque de succión, convertida en metros de cabeza (ps1 / ρg). En un estanque de agua abierto a nivel del mar, la cabeza estática de succión es igual a la presión atmosférica (101.3 kPa) dividida por ρ=1 (agua) y por 9.81; esto es 10.3 m. de cabeza.
vs1 = Velocidad del líquido en la superficie del estanque m/s.
hvs1 = Cabeza de velocidad. Se define como la energía de un líquido resultante de su movimiento a una velocidad determinada. Equivale a la distancia vertical (en un vacío perfecto) que tendría que caer la masa liquida para adquirir la velocidad vs1. En estanques relativamente grandes su valor es insignificante y no se considera en los cálculos.
hs = Cabeza estática de succión. Corresponde a la elevación relativa del líquido con respecto a la línea centro de la bomba. Si el nivel esta sobre la línea, hs es positivo: Si el nivel esta bajo la línea, hs es negativo, esta condición se suele nombrar como ‘succión aspirante’ o de levante.
Hfs = Cabeza de fricción. Cabeza (energía) requerida para vencer la resistencia que oponen al flujo las tuberías, válvulas, fittings, etc., existentes entre el punto A y el flanche de succión de la bomba, (punto B). Debe incluir la pérdida por entrada del líquido desde el estanque a la línea de succión (hi). La cabeza de fricción es dependiente del tamaño, condición y tipo o material del tubo; del número y tipo de fittings y válvulas; del caudal y naturaleza del fluido. Para su cálculo se requieren conocimientos e información especializada.
ps2 = Presión estática absoluta en el flanche de succión, en kPa
hps2 = Cabeza estática en el flanche de succión.= ps2 / g ·ρ.
vs2 = Velocidad del líquido pasando por el flanche de succión, m/s. La tubería de succión se dimensiona de modo que la velocidad en la succión permanezca baja.
hvs2 = Cabeza de velocidad en el flanche de succión. Esto es, energía del líquido moviéndose a una velocidad promedio vs2. En este caso: hvs2 = v2s2 /2g
pv = Presión de vapor absoluta del líquido a la temperatura de bombeo, en kPa. Los valores se encuentran tabulados en los textos especializados.
hpv = Cabeza de vapor. Presión de vapor absoluta convertida en metros de cabeza. hpv = pv /g ·ρ
Hs = Cabeza Total de succión en el flanche de entrada de la bomba, en metros.



Cálculo de la Cabeza Total de Succión a la entrada de la bomba.
La bomba se alimenta desde un estanque que debe tener un cierto nivel de líquido y que puede estar sobre o bajo el centro del flanche de succión de la bomba (+ Zm o – Zm). El estanque puede estar abierto a la atmósfera (Hat), o presurizado (+ Hpr), o bajo vacío (- Hpr). El flujo tiene que vencer la resistencia de las tuberías y accesorios entre la salida del estanque y la entrada a la bomba (Hfs, Hi, etc.).

El sistema externo de succión tiene que suministrar una cierta cantidad de cabeza (energía) en el flanche de admisión de la bomba. Esto se conoce como NPSHa, (Net Positive Suction Head available) Cabeza Neta Positiva de succión disponible. El término ‘cabeza’ medido en metros, se usa como una expresión de la energía del líquido en cualquier punto en el sistema de flujo. Los líquidos incompresibles pueden contener energía en la forma de velocidad, presión, o elevación. El sistema externo de succión tiene que diseñarse de modo que la presión estática en el flanche de succión sea siempre positiva, mayor que la presión de vapor y suficientemente alta para vencer las pérdidas internas en la zona de succión de la bomba, cuyo valor lo especifica el fabricante y es conocido como NPSHr (requerido).

En términos prácticos, el NPSHa (en metros) en el flanche de succión de un sistema simple, está dado por la ecuación algebraica:

NPSHa = + Hat + (Zm) + Hvs + (Hpr) – Hvap – Hfs – Hi. (Ecuación 1)
En donde:
Hat = Cabeza de Presión atmosférica en el lugar de aplicación
Zm = Cabeza estática de succión. Altura estática del líquido. Positivo sobre el eje de la bomba y negativo bajo el eje de la bomba.
Hvs = Cabeza de velocidad en flanche de admisión V = 1273 x Caudal (l/s)/d2 donde d = diámetro (mm)
Hpr = Cabeza de presión del estanque de succión. Positivo sobre y negativo bajo la presión atmosférica.
Hvap = Cabeza de presión de vapor (a la temperatura del líquido) en el flanche de admisión.
Hfs = Cabeza de fricción. Cabeza (energía) requerida para vencer la resistencia que oponen al flujo las tuberías, válvulas, fittings, expansiones, restricciones, etc., existentes entre el punto A y el flanche de succión de la bomba, (punto B en Fig. 3). Es función de la velocidad y características del fluido y de la características de la tubería según factores empíricos encontrados en tablas y gráficos especializados.
Hi = Cabeza de ingreso a la línea de succión (Punto A). Representa la energía gastada en el ingreso del fluido desde el estanque a la línea de succión. Es función de la velocidad del fluido y de la forma de unión del estanque al tubo de succión. Hi = k · V2/2g donde k = factor tabulado en textos especializados.
Nota. Todos los términos de presión se convierten en metros de ‘cabeza’, dividiendo la presión en kPa por 9.81 y por la densidad específica del fluido.

En instalaciones existentes, el NPSHa también se puede calcular con la lectura (presión manométrica absoluta) de un manómetro conectado cerca del flanche de succión.
Nota: El manómetro sólo indica la presión estática en el punto de conexión por lo que debe incorporarse la cabeza dinámica Hvs.
NPSHa = + Hat – Hvap + Hvs + (Hms)
Hms = Cabeza de succión manométrica. Positiva si la presión manométrica es superior a la presión atmosférica y negativa si es inferior.

martes, 6 de enero de 2009

Cavitación Capitulo III

Mecanismo de la Cavitación

El fenómeno de la cavitación es un proceso progresivo de varias etapas como se aprecia en la

Etapas de la Cavitación
Formación de burbujas dentro del líquido
Crecimiento de las burbujas
Colapso de las burbujas
cavitación

Etapa 1. Formación de Burbujas
Las burbujas se forman dentro del líquido cuando este se vaporiza. Esto es, cuando cambia desde la fase liquida a la de vapor.

La vaporización de cualquier líquido dentro de un contenedor se produce ya sea porque la presión sobre la superficie del líquido disminuye hasta ser igual o inferior a su presión de vapor (a la temperatura actual), o bien porque la temperatura del líquido sube hasta hacer que la presión de vapor sobrepase a la presión sobre la superficie de líquido. Por ejemplo en un depósito abierto a nivel del mar la superficie del agua está sometida a una presión atmosférica de aprox. 10 bar por lo que la temperatura tendría que subir a 100 ºC para que su presión de vapor sobrepase los 10 bar y se inicie la ebullición (formación de burbujas). A 4000 m. de altitud la presión atmosférica se reduce a 6.2 bar por lo que la temperatura tendría que subir solamente a unos 85 ºC para que se inicie la ebullición. Si en un contenedor cerrado se reduce la presión a 0.3 bar, la ebullición se iniciará con el agua a 25 ºC. También se producirá la ebullición si la presión permanece constante en alrededor de 0.3 bar pero la temperatura sube sobre 25 ºC.
En resumen, la vaporización se produce por adición de calor o por reducción de la presión estática (para la definición de cavitación se excluirá la acción dinámica del líquido)
Lo mismo que en un contenedor cerrado, la vaporización del líquido puede ocurrir en las bombas centrifugas cuando la presión estática en algún punto se reduce a un valor menor que la presión de vapor del líquido (a la temperatura en dicho punto).

Por lo tanto, el concepto clave es: Las burbujas de vapor se forman dentro de la bomba cuando la presión estática en algún punto baja a un valor igual o menor que la presión de vapor del líquido.

La presión estática en algún punto dentro de la bomba puede bajar hasta un nivel inferior a la presión de vapor bajo dos condiciones:
Porque la caída de presión actual en el sistema externo de succión es mayor que la que se consideró durante el diseño del sistema. (Es una situación bastante corriente). Esto resulta en que la presión disponible en la succión de la bomba (NPSHa) no es suficientemente alta para suministrar la energía requerida para superar la caída de presión interna (NPSHr) propia del diseño de la bomba.
Porque la caída de presión actual dentro de la bomba (NPSHr) es mas grande que la informada por el fabricante y que se usó para seleccionar la bomba.

lunes, 1 de diciembre de 2008

Cavitacion Parte II

Definiciones Importantes

Presión estática, (ps)
La presión estática en una corriente de fluido es la fuerza normal por unidad de área actuando sobre un plano o contorno sólido en un punto dado. Describe la diferencia de presión entre el interior y el exterior de un sistema, despreciando cualquier movimiento en el líquido. Por lo tanto, la presión estática en un punto de un ducto, es la diferencia entre la presión interna y externa en ese punto, omitiendo cualquier movimiento del flujo en su interior. En términos de energía, la presión estática es una medida de la energía potencial de un fluido.

Presión Dinámica (pd)
Un fluido en movimiento ejerce una presión mas alta que la presión estática debido a la energía cinética (mv2/2) del fluido. Esta presión adicional se define como presión dinámica. Se puede medir convirtiendo la energía cinética del fluido en energía potencial. En otras palabras, es la presión que existiría en una corriente de fluido que ha sido desacelerada desde su velocidad “v” a velocidad “cero”.

Presión Total (pt )
Se define como la suma de la presión estática más la presión dinámica. Es una medida de la energía total de una corriente de fluido en movimiento. Esto es, energía cinética mas energía potencial.

Relación entre ps, pd y pt
En un fluido incompresible la relación se puede medir usando un aparato llamado Tubo Pitot.
La relación también puede establecerse aplicando un simple balance energético: energía potencial + energía cinética = energía Total (constante) o en términos de presión: presión estática + presión dinámica = presión Total.
La energía cinética es una función de la velocidad “v” y de su masa comúnmente representada por la densidad del fluido (ρ). Entonces: E.C. = pd = ½ ρ v2. . En términos de presión total: pt = ps + ½ ρ v2.
En lugar de utilizar unidades de presión se prefiere expresar la energía de bombeo como energía por unidad de peso de líquido bombeado, la que se indica en Newton- metro por Newton o justamente en metros de columna de líquido; esta magnitud se identifica universalmente como “cabeza” (head en inglés). Esto es necesario debido a que la altura de la columna que produce una bomba centrifuga es independiente de la densidad del líquido. Por ejemplo una bomba ‘X’ corriendo a ‘N’ rpm. producirá una misma cabeza ‘H’ metros de agua, o de ácido sulfúrico concentrado, o de cualquier otro fluido; sin embargo, la potencia empleada será proporcional a la densidad de cada fluido.

Los términos de presión pueden convertirse en metros de cabeza dividiendo la presión en kPa por 9.81 (g) y por la densidad especifica(ρ) del fluido.
Cabeza Estática (he) = Presión Estática/ g· ρ
Cabeza de Velocidad (hv) = Presión Dinámica / g · ρ = (½ ρ v2)/ (ρ · g) = v2 /2 g
Presión de Vapor (pv) = Es la presión requerida para mantener a un líquido en estado líquido. Si la presión que se aplica sobre la superficie de un líquido no es suficiente para mantener sus moléculas estrechamente unidad entre sí, las moléculas se desprenderán en la forma de gas o vapor. La presión de vapor es dependiente de la temperatura del líquido. A mayor temperatura más alta es la presión de vapor.

martes, 25 de noviembre de 2008

Cavitación : Parte I

Cavitación
Un ataque al corazón de las Bombas Centrifugas.

Introducción.
La cavitación es un fenómeno muy común, pero es el menos comprendido de todos los problemas de bombeo. Tiene distintos significados para diferentes personas. Algunos la definen como el ruido de golpeteo o traqueteo que se produce en una bomba. Otros la llaman “patinaje” debido a que la presión de la bomba decrece y el caudal se torna errático. Cuando se produce cavitación, la bomba no solamente no cumple con su servicio básico de bombear un líquido sino que también experimenta daños internos, fallas de los sellos, rodamientos, etc.
En resumen, la cavitación es una condición anormal que puede producir pérdidas de producción, daños al equipo y lo peor de todo, lesiones al personal.

Los profesionales de la Planta deben estar capacitados para detectar rápidamente los signos de cavitación, identificar correctamente su tipo y la causa que la produce para así poder eliminarla o atenuarla. Una comprensión correcta de los conceptos envueltos es clave para el diagnostico y corrección de cualquier problemas de bombeo relacionado con cavitación.

Significado del término “Cavitación” en el contexto de las bombas centrifugas.

Cavitación procede del latín “cavus”, que significa espacio hueco o cavidad. En los diccionarios técnicos se define como ‘la rápida formación y colapso de cavidades en zonas de muy baja presión en un flujo líquido.
En la literatura sobre bombas centrifugas, en lugar de “cavidad”, se usan varios términos como: bolsones de vapor, bolsones de gas, hoyos, burbujas, etc. En este artículo se usará el término “burbuja”.

En el contexto de las bombas centrifugas, el término cavitación implica un proceso dinámico de formación de burbujas dentro del líquido, su crecimiento y subsecuente colapsamiento a medida que el líquido fluye a través de la bomba.

Generalmente las burbujas que se forman dentro de un líquido son de dos tipos: Burbujas de vapor o burbujas de gas.
- Las burbujas de vapor se forman debido a la vaporización del líquido bombeado. La cavitación inducida por la formación y colapso de estas burbujas se conoce como Cavitación Vaporosa.
- Las burbujas de gas se forman por la presencia de gases disueltos en el líquido bombeado (generalmente aire pero puede ser cualquier gas presente en el sistema). La cavitación inducida por la formación y colapso de estas burbujas se conoce como Cavitación Gaseosa.

En ambos tipos, las burbujas se forman en un punto interior de la bomba en el que la presión estática es menor que la presión de vapor del líquido (cavitación vaporosa) o que la presión de saturación del gas (cavitación gaseosa).

La Cavitación Vaporosa es la forma de cavitación más común en las bombas de proceso. Generalmente ocurre debido a un insuficiente NPSH disponible o a fenómenos de recirculación interna. Se manifiesta como una reducción del desempeño de la bomba, ruido excesivo, alta vibración y desgaste en algunos componentes de la bomba. La extensión del daño puede ir desde unas picaduras relativamente menores después de años de servicio, hasta fallas catastróficas en un corto periodo de tiempo.

La Cavitación Gaseosa se produce por efecto de gases disueltos (más comúnmente aire) en el líquido. Esta cavitación raramente produce daño en el impulsor o carcaza. Su efecto principal es una pérdida de capacidad. No debe confundirse con el ingreso de aire o bombeo de líquidos espumosos, situaciones que no necesariamente producen cavitación pero sí reducción de capacidad, detención del bombeo y otros problemas. Para el bombeo de líquidos espumosos se han diseñado y se siguen desarrollando bombas especiales (Froth pumps) que han logrado un considerable mejoramiento en el manejo de estos fluidos.

Para poder identificar los tipos de cavitación es necesario entender primero sus mecanismos, es decir, como ocurre. En este artículo se abordará solamente la cavitación vaporosa.

Cavitacion : Un ataque al corazon de las bombas

Colegas :

En homenaje a mi Padre Don Boris Cisneros a 2 años de su fallecimiento , quiero compartir con ustedes este muy buen articulo elaborado por él y que explica muy bien el fenomeno de la cavitación.
Se publicara por partes para su mejor comprensión y cualquier consulta al respecto puedan hacerla llegar al siguiente e-mail : rh.cisneros@hotmail.com

atte.

Rodolfo Cisneros A.

Retomando el Blog

Estimados :

Después de un tiempo trabajando en Sudafrica y por insinuación de varias personas he retomado esta iniciativa , para continuar aportando con papers y otros escritos de diferentes autores y propios para comprender mas a cabalidad la operación y mantención de las bombas centrifugas de pulpas